Sample Question Paper - 1 Class- X Session- 2021-22 TERM 1 Subject- Mathematics (Basic)

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 40

General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Section A

Attempt any 16 questions

1. The product of a non-zero rational and an irrational number is [1]

a) always irrational

b) always rational

c) one

d) rational or irrational

2. The value of k for which the system of equations

[1]

$$x + 2y - 3 = 0$$
 and

$$5x + ky + 7 = 0$$

has no solution, is

a) 1

b) 10

c) 6

d) 3

3. If α and β are the zeroes of the polynomial $3x^2 + 11x - 4$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is

[1]

a)
$$\frac{13}{4}$$

b) $\frac{12}{4}$

c)
$$\frac{11}{4}$$

d) $\frac{15}{4}$

4. If the system 6x - 2y = 3, kx - y = 2 has a unique solution, then

[1]

a)
$$k = 3$$

b) $k \neq 4$

c)
$$k \neq 3$$

d) k = 4

5.
$$5 \cot^2 A - 5 \csc^2 A =$$

[1]

a) 0

b) 5

c) 1

d) -5

6. If $9^{x+2} = 240 + 9^x$, then the value of x is

[1]

a) 0.5

b) 0.1

c) 0.3	d) 0.2
C) U.S	u) 0.2

7	TAThich	$\alpha f + h \alpha$	fallaring	expressions	io mot o	malrmamial?
1.	VV IIICII	orme	10110W1119	expressions	is nor a	DOIVHOIIIIAL!

a)
$$5x^3 - 3x^2 - \sqrt{x} + 2$$

b)
$$5x^3 - 3x^2 - x + \sqrt{2}$$

c)
$$5x^2 - \frac{2}{3}x + 2\sqrt{5}$$

d)
$$\sqrt{5}x^3 - \frac{3}{5}x + \frac{1}{7}$$

8. The distance between the points A
$$(0, 6)$$
 and B $(0, -2)$ is

[1]

[1]

a) 8

b) 4

c) 6

d) 2

A quadratic polynomial whose zeros are $\frac{3}{5}$ and $\frac{-1}{2}$, is 9.

[1]

a)
$$10x^2 - x + 3$$

b)
$$10x^2 + x - 3$$

c)
$$10x^2 - x - 3$$

d)
$$10x^2 + x + 3$$

A polynomial of degree _____ is called a linear polynomial. 10.

[1]

a) 1

b) 3

c) 2

d) 0

A ticket is drawn from a bag containing 100 tickets numbered from 1 to 100. The probability of [1] 11. getting a ticket with a number divisible by 10 is

a)
$$\frac{3}{10}$$

b)
$$\frac{1}{10}$$

c)
$$\frac{4}{10}$$

d)
$$\frac{1}{5}$$

For every positive integer n, n^2 - n is divisible by 12.

[1]

a) 6

b) 4

c) 2

d) 8

13. If P(-1, 1) is the midpoint of the line segment joining A(-3, b) and B(1, b + 4) then b = ?

[1]

a) 0

b) 2

c) 1

d) -1

14. The coordinates of the point P dividing the line segment joining the points A (1, 3) and B(4, 6) in the ratio 2: 1 are

[1]

a) (2, 4)

b) (3, 5)

c) (4, 2)

d) (5, 3)

If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of 'k' is 15.

[1]

a) - 10

b) - 5

c) 10

d) 5

If $\cos \theta = \frac{4}{5}$ then $\tan \theta$ = ? 16.

[1]

b) $\frac{5}{3}$

If $x = \alpha$ and $y = \beta$ is the solution of the equations x - y = 2 and x + y = 4, then 17.

[1]

CLICK HERE

	a) α = 1 and β = 3	b) α = 3 and β = -1	
	c) α = 3 and β = 1	d) α = -3 and β = 1	
18.	In a family of 3 children, the probabil	ity of having at least one boy is	[1]
	a) $\frac{1}{8}$	b) $\frac{7}{8}$	
	c) $\frac{3}{4}$	d) $\frac{5}{8}$	
19.	The HCF of 135 and 225 is:		[1]
	a) 5	b) 15	
	c) 45	d) 75	
20.	The points A(9, 0), B(9, 6), C(-9, 6) and I	D(-9, 0) are the vertices of a	[1]
	a) rhombus	b) trapezium	
	c) rectangle	d) square	
		Section B	
	Atte	mpt any 16 questions	
21.	Ritu can row downstream 20 km in 2 l current is	hours and upstream 4 km in 2 hours. The speed of the	[1]
	a) 12 km/hr	b) 6 km/hr	
	c) 4 km/hr	d) 8 km/hr	
22.	If the sum of the zeros of the quadrati its zeros then k = ?	c polynomial for $kx^2 + 2x + 3k$ is equal to the product of	[1]
	a) $\frac{1}{3}$	b) $\frac{2}{3}$	
	c) $\frac{-2}{3}$	d) $\frac{-1}{3}$	
23.	The decimal expansion of $\frac{23}{2^5 \times 5^2}$ will t	erminate after how many places of decimal?	[1]
	a) 1	b) 5	
	c) 2	d) 4	
24.	$(\cos 0^{\circ} + \sin 30^{\circ} + \sin 45^{\circ}) (\sin 90^{\circ} + \cos 90^{\circ})$	$660^{\circ} - \cos 45^{\circ}) = ?$	[1]

If $\frac{2}{x} + \frac{3}{y} = 6$ and $\frac{1}{x} + \frac{1}{2y} = 2$ then 25.

[1]

a) $x = \frac{2}{3}, y = 1$

b) $x = \frac{3}{2}, y = 1$

c) $x = 1, y = \frac{2}{3}$

d) $x=1,y=rac{3}{2}$

The number of zeroes of a cubic polynomial is 26.

[1]

a) 3

b) 2

c) 4

d) 1

 \triangle ABC \sim \triangle PQR. If PQ = 3 cm, QR = 2 cm and RP = 2.5 cm, BC = 4 cm, then perimeter of \triangle ABC 27. [1] is

	a) 20 cm.	b) 12 cm.	
	c) 15 cm.	d) 18 cm.	
28.	The abscissa of any point on the y – axis is		[1]
	a) 0	b) 1	
	c) y	d) – 1	
29.	If θ is an acute angle such that $\sec^2\theta$ = 3, then	the value of $rac{ an^2 heta-cosec^2 heta}{ an^2 heta+cosec^2 heta}$ is	[1]
	a) $\frac{1}{7}$	b) $\frac{3}{7}$	
	c) $\frac{2}{7}$	d) $\frac{4}{7}$	
30.	The solution of 217x + 131y = 913 and 131x +	217y = 827 is	[1]
	a) $x = 2$ and $y = 2$	b) $x = 2$ and $y = 3$	
	c) $x = 3$ and $y = 2$	d) $x = 3$ and $y = 3$	
31.	The decimal expansion of the number $\frac{14753}{1250}$	will terminate after.	[1]
	a) one decimal place	b) three decimal place	
	c) two decimal place	d) four decimal place	
32.	If the diagonals of a quadrilateral divide each	n other proportionally then it is a	[1]
	a) square	b) rectangle	
	c) trapezium	d) parallelogram	
33.	$\sin^2 A + \sin^2 A \tan^2 A =$		[1]
	a) tan ² A	b) cos ² A	
	c) None of these	d) sin ² A	
34.	If A (-1, 0), B(5, -2) and C(8, 2) are the vertices	of a $\triangle ABC$ then its centroid is	[1]
	a) (6, 0)	b) (0, 6)	
	c) (4, 0)	d) (12, 0)	
35.	If an event cannot occur then its probability i	is	[1]
	a) $\frac{3}{4}$	b) $\frac{1}{2}$	
	c) 0	d) 1	
36.	The area of the triangle formed by the lines		[1]
	2x + 3y = 12, $x - y = 1$ and $x = 0$ is		
	a) 6.5 sq. units	b) 7 sq. units	
	c) 7.5 sq. units	d) 6 sq. units	
37.	The sum of the exponents of the prime factor	rs in the prime factorisation of 196, is	[1]
	a) 2	b) 1	
	c) 4	d) 6	_
38.	If $\sqrt{3}\tan 2\theta - 3 = 0$ then θ = ?		[1]

a) 30°

b) 60°

c) 15°

d) 45°

39. The probability that a non leap year selected at random will have 53 Sundays is [1]

a) $\frac{1}{7}$

c) $\frac{4}{7}$

d) $\frac{3}{7}$

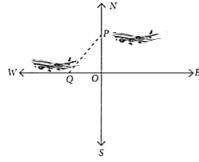
40. If the points (6, 1), (8, 2), (9, 4) and (p, 3), taken in order are the vertices of a parallelogram, then the value of 'p' is

[1]

a) 5

b) -7

c) 6


d) 7

Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

An aeroplane leaves an airport and flies due north at a speed of 1200 km /hr. At the same time, another aeroplane leaves the same station and flies due west at the speed of 1500 km/hr as shown below. After $1\frac{1}{2}$ hr both the aeroplanes reaches at point P and Q respectively.

41. Distance travelled by aeroplane towards north after $1\frac{1}{2}$ hr is [1]

a) 1350 km

b) 1400 km

c) 1500 km

d) 1800 km

Distance travelled by aeroplane towards west after $1\frac{1}{2}$ hr is 42.

[1]

a) 1800 km

b) 1600 km

c) 2400 km

d) 2250 km

43. In the given figure, $\angle POQ$ is [1]

a) 80°

b) 70°

c) 90°

d) 100°

Distance between aeroplanes after $1\frac{1}{2}$ hr, is 44.

[1]

a) $350\sqrt{31} \text{ km}$

b) $472\sqrt{41} \text{ km}$

c) $125\sqrt{12} \text{ km}$

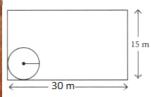
d) $450\sqrt{41}$ km

Area of $\triangle POQ$ is 45.

[1]

a) 179000 km²

b) 185000 km²


c) 186000 km²

d) 2025000 km²

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

A farmer has a rectangular field of length 30 m and breadth 15 m. By the farmer a pit of diameter 7 m is dug 12 m deep for rain water harvesting. The earth taken out is spread in the field.

46. Find the volume of the earth taken out.

[1]

a) 465 m³

b) 468 m^3

c) 462 m^3

- d) 460 m³
- 47. The area of the rectangular field is

[1]

a) 450 m²

b) 440 m^2

c) 420 m²

- d) 430 m²
- 48. Find the area of the top of the pit

[1]

a) 41.5 m²

b) None of these

c) 38.5 m²

- d) 40.5 m²
- 49. The area of the remaining field is

[1]

a) 405 m²

b) 410 m²

c) 411.5 m²

- d) 402.3 m²
- 50. Find the level rise in the field.

[1]

a) 0.5 m

b) 2.12 m

c) 1.12 m

d) 3 m

Solution

Section A

1. (a) always irrational

Explanation: The product of a non-zero rational and an irrational number is always irrational. For example, $\sqrt{3} \times 2 = 2\sqrt{3}$

This is an irrational number.

2. **(b)** 10

Explanation: The given system of equations are

$$x + 2y - 3 = 0$$

$$5x + ky + 7 = 0$$

For the equations to have no solutions, we must have

$$\frac{1}{5} = \frac{2}{k} \neq \frac{-3}{7}$$
Taking,
$$\frac{1}{5} = \frac{2}{k}$$

Taking,
$$\frac{1}{5} = \frac{2}{k}$$

$$\Rightarrow$$
 k = 10

Therefore the value of k is 10.

3. **(c)**
$$\frac{11}{4}$$

Explanation: Here a = 3,b = 11,c = -4 Since $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$

$$\alpha+\beta=rac{-11}{3}$$
, $\alpha\beta=rac{-4}{3}$

So,
$$\frac{-11}{\frac{-4}{3}} = \frac{11}{4}$$

(c) $k \neq 3$ 4.

Explanation: If the system has a unique solution, then $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

Here
$$a_1 = 6, a_2 = k, b_1 = -2$$

and
$$b_2=-1$$

$$\therefore \frac{6}{k}
eq \frac{-2}{-1} \Rightarrow 3k
eq 6 \Rightarrow k
eq 3$$

(d) -5 5.

Explanation: Given: $5\cot^2 A - 5\csc^2 A$

$$= 5(\cot^2 A - \csc^2 A)$$

$$= 5 \times -1 = -5$$

[:
$$\csc^2\theta - \cot^2\theta = 1$$
]

(a) 0.5 6.

Explanation: $9^{x+2} = 240 + 9^x$

$$\Rightarrow$$
 9 $^{\mathrm{x}}$ $imes$ 9 $^{\mathrm{2}}$ = 240 + 9 $^{\mathrm{x}}$

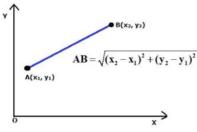
$$\Rightarrow$$
 9^x (81 - 1) = 240

$$\Rightarrow$$
 9 x = 3

$$\Rightarrow$$
 9^x = 9^{1/2}

$$\Rightarrow$$
 x = $\frac{1}{2}$ = 0.5

7. **(a)**
$$5x^3 - 3x^2 - \sqrt{x} + 2$$


Explanation: $5x^3 - 3x^2 - \sqrt{x} + 2$ is not a polynomial because each term of a polynomial should be a product of a constant and one or more variable raised to a positive, zero or integral power. Here \sqrt{x} does not satisfy the condition of being a polynomial.

8. **(a)** 8

Explanation: By using the distance formula:

$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Lets calculate the distance between the points (x_1, y_1) and (x_2, y_2)

We have;

$$x_1 = 0, x_2 = 0$$

$$y_1 = 6$$
, $y_2 = -2$

$$d^2 = (0-0)^2 + (-2-6)^2$$

$$d = \sqrt{(0)^2 + (-8)^2}$$

$$d = \sqrt{64}$$

d = 8 units

So, the distance between A (0, 6) and B (0, -2) = 8

9. **(c)** $10x^2 - x - 3$

Explanation:
$$\alpha+\beta=\left(\frac{3}{5}-\frac{1}{2}\right)=\frac{1}{10}, \alpha\beta=\frac{3}{5}\times\left(\frac{-1}{2}\right)=\frac{-3}{10}$$

Required olynomial is $x^2 - \frac{1}{10}x - \frac{3}{10}$, i.e., $10x^2 - x - 3$

10. **(a)** 1

Explanation: A polynomial of degree 1 is called a linear polynomial. Example 4x + 3, 65y are linear polynomials.

11. **(b)** $\frac{1}{10}$

Explanation: Number of possible outcomes = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} = 10

Number of Total outcomes = 100

$$\therefore$$
 Required Probability = $\frac{10}{100} = \frac{1}{10}$

12. **(c)** 2

Explanation: $n^2 - n = n(n - 1)$. Since n and (n - 1) are consecutive integers. Therefore, one of them must be divisible by 2.

13. **(d)** -1

Explanation: we have
$$\frac{b+(b+4)}{2}=1\Rightarrow 2b+4=2\Rightarrow 2b=-2\Rightarrow b=-1$$

14. **(b)** (3, 5)

Explanation: Point P divides the line segment joining the points A(1, 3) and B(4, 6) in the ratio 2: 1

Let coordinates of P be (x, y), then

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} = \frac{2 \times 4 + 1 \times 1}{2 + 1} = \frac{8 + 1}{3} = \frac{9}{3} = 3$$

$$y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} = \frac{2 \times 6 + 1 \times 3}{2 + 1} = \frac{12 + 3}{3} = \frac{15}{3} = 5$$

.: Coordinates of P are (3, 5)

15. **(a)** – 10

Explanation: Given Polynomial is $p(x) = x^2 + 3x + k$

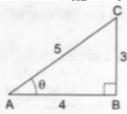
According to question, p(x) = 0 (Put x = 2)

$$p(2) = 0$$

$$\Rightarrow (2)^2 + 3 \times 2 + k = 0$$

$$\Rightarrow 4 + 6 + k = 0$$

$$\Rightarrow k = -10$$


16. **(a)**
$$\frac{3}{4}$$

Explanation:
$$\cos \theta = \frac{4}{5} = \frac{AB}{AC}$$

Explanation:
$$\cos \theta = \frac{4}{5} = \frac{AB}{AC}$$

 $\therefore BC^2 = AC^2 - AB^2 = 25 - 16 = 9$

$$\Rightarrow$$
 BC = 3

$$\therefore \tan \theta = \frac{BC}{AB} = \frac{3}{4}$$

17. **(c)**
$$\alpha = 3$$
 and $\beta = 1$

Explanation: Given:
$$x - y = 2 ... (i) ... (i)$$

And
$$x + y = 4 ... (ii)$$

$$2x = 6$$

$$\Rightarrow$$
 x = 3

Putting the value of x in eq. (i), we get

$$3 - y = 2$$

$$\Rightarrow$$
 y = 1

$$\therefore$$
 x = α = 3 and y = β = 1

18. **(b)**
$$\frac{7}{8}$$

Explanation: All possible outcomes are BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG.

Number of all possible outcomes = 8.

Let E be the event of having at least one boy.

Then, E contains GGB, GBG, BGG, BBG, BGB, GBB, BBB.

Number of cases favourable to E = 7.

Therefore, required probability = P(E) = $\frac{7}{8}$

19. **(c)** 45

Explanation: We have,

$$135 = 3 \times 45$$

$$= 3 \times 3 \times 15$$

=
$$3 \times 3 \times 3 \times 5$$

$$=3^3\times5$$

Now, for 225 will be

$$225 = 3 \times 75$$

=
$$3 \times 3 \times 5 \times 5$$

$$= 3^2 \times 5^2$$

The HCF will be $3^2 \times 5 = 45$

20. (c) rectangle

Explanation: A (9, 0), B(9, 6), C(-9, 6) and D(-9, 0) are the given vertices.

Then,

$$AB^2 = (9 - 9)^2 + (6 - 0)^2$$

$$= (0)^2 + (6)^2 = 0 + 36 = 36$$
 units

$$BC^2 = (-9 - 9)^2 + (6 - 6)^2$$

$$= (-18)^2 + (0)^2 = 324 + 0 = 324$$
 units

$$CD^2 = (-9 + 9)^2 + (0 - 6)^2 = (0)^2 + (-6)^2 = 0 + 3 = 36$$
 units

$$DA^2 = (-9 - 9)^2 + (0 - 0)^2 = (-18)^2 + (0)^2 = 324 + 0 = 324 \text{ units}$$

Therefore, we have:

$$AB^2 = CD^2$$
 and $BC^2 = DA^2$

Now, the diagonals are:

$$AC^2 = (-9 - 9)^2 + (6 - 0)^2 = (-18)^2 + (6)^2 = 324 + 36 = 360$$
 units

$$BD^2 = (-9 - 9)^2 + (0 - 6)^2 = (-18)^2 + (-6)^2 = 324 + 36 = 360$$
 units

Therefore,

$$AC^2 = BD^2$$

Hence, ABCD is a rectangle.

Section B

21. (c) 4 km/hr

Explanation: Let speed of boat = x km/h

speed of current = y km/h

 \therefore Downstream speed = (x + y) km/h

and Upstream speed = (x - y) km/h

$$\therefore$$
 Speed = $\frac{\text{Distance}}{\text{Time}}$

$$\therefore \text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

$$\therefore \text{Time} = \frac{\text{Distance}}{\text{Speed}}$$

According to question,

In downstream, $\frac{20}{x+y} = 2$

$$\Rightarrow$$
 x + y =10 ... (i)

And In upstream, $\frac{4}{x-y} = 2$

$$\Rightarrow$$
 x - y = 2 ... (ii)

Subtracting eq. (ii) from (i),

$$\Rightarrow$$
 y = 4

Therefore, the speed of the current is 4 km/h.

22. **(c)**
$$\frac{-2}{3}$$

Explanation:
$$\alpha+\beta=lpha\beta\Rightarrow rac{-2}{k}=rac{3k}{k}\Rightarrow rac{-2}{k}=3\Rightarrow k=rac{-2}{3}$$

23. **(b)** 5

Explanation: We have,

$$\frac{23}{2^5 \times 5^2} = \frac{23 \times 5^3}{2^5 \times 5^2 \times 5^2}$$
$$= \frac{2875}{10000}$$
$$= 0.02875$$

: the given number will be terminate after 5 digits.

24. **(b)** $\frac{7}{4}$

Explanation: $(\cos 0^{\circ} + \sin 30^{\circ} + \sin 45^{\circ}) (\sin 90^{\circ} + \cos 60^{\circ} - \cos 45^{\circ}) = ?$

$$= \left(1 + \frac{1}{2} + \frac{1}{\sqrt{2}}\right) \left(1 + \frac{1}{2} - \frac{1}{\sqrt{2}}\right) = \left(\frac{3}{2} + \frac{1}{\sqrt{2}}\right) \left(\frac{3}{2} - \frac{1}{\sqrt{2}}\right) = \left(\frac{9}{4} - \frac{1}{2}\right) = \frac{7}{4}$$

25. **(a)**
$$x = \frac{2}{3}, y = 1$$

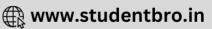
Explanation: Put $\frac{1}{x} = u$ and $\frac{1}{y} = v$. Then, 2u + 3v = 6(i)

and
$$u + \frac{1}{2}v = 2 \Rightarrow 2u + v = 4$$
(ii)

Solve (i) an (ii) we get

$$x = \frac{2}{3}, y = 1$$

26.


Explanation: The number of zeroes of a cubic polynomial is at most 3 because the highest power of the variable in cubic polynomial is 3, i.e. $ax^3 + bx^2 + cx + d$

27. (c) 15 cm.

Explanation: Given: $\Delta ABC \sim \Delta PQR$

$$\therefore \frac{\text{Perimeter of } \Delta ABC}{\text{Perimeter of } \Delta PQR} = \frac{BC}{QR}$$

$$\Rightarrow \frac{\text{Perimeter of } \triangle ABC}{3+2+2.5} = \frac{4}{2}$$

$$\Rightarrow \text{Perimeter of } \triangle ABC = 15 \text{ cm}$$

28. **(a)** 0

Explanation: Since coordinates of any point on y-axis is (0,y). Therefore, abscissa is 0.

29. **(a)** $\frac{1}{7}$

Explanation: Given, $\sec^2\theta=3\Rightarrow\sec\theta=\frac{\sqrt{3}}{1}=\frac{\text{Hypotenuse}}{\text{Base}}$

By Pythagoras Theorem,

 $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$

$$(\sqrt{3})^2 = (1)^2 + (Perp.)^2$$

$$\Rightarrow$$
 3 = 1 + (Perp.)² \Rightarrow (Perp.)² = 3 - 1 = 2

$$\therefore$$
 Perpendicular = $\sqrt{2}$

$$\therefore \tan \theta = \frac{\text{Perpendicular}}{\text{Base}} = \frac{\sqrt{2}}{1} = \sqrt{2}$$

$$\csc \theta = \frac{\text{Hypotenuse}}{\text{Perpendicular}} = \frac{\sqrt{3}}{\sqrt{2}} = \sqrt{\frac{3}{2}}$$

Now,
$$\frac{\tan^2 \theta - \csc^2 \theta}{\tan^2 \theta + \csc^2 \theta}$$
$$= \frac{(\sqrt{2})^2 - (\sqrt{\frac{3}{2}})^2}{(\sqrt{2})^2 + (\sqrt{\frac{3}{2}})^2} = \frac{2 - \frac{3}{2}}{2 + \frac{3}{2}}$$
$$= \frac{\frac{1}{2}}{\frac{7}{2}} = \frac{1}{2} \times \frac{2}{7} = \frac{1}{7}$$

30. **(c)** x = 3 and y = 2

Explanation: Firstly add up both eq.

$$217x + 131y = 913$$
,

$$131x + 217y = 827$$
,

Dividing both side by 348

We get
$$x + y = 5 ... (i)$$

Similarly Subtract given eqn 217x + 131y = 913 - (131x + 217y = 827)

$$86x - 86y = 86$$

Dividing both side by 86

We get $x - y = 1 \dots$ (ii)equation

Now, solve equation (i) and (ii)

$$x + y = 5$$

$$x - y = 1$$

$$2x = 6$$

$$\Rightarrow$$
 x = 3

Put x = 3 in equation (i)

$$x + y = 5$$

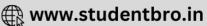
$$3 + y = 5$$

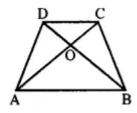
$$y = 5 - 3$$

$$\Rightarrow$$
 y = 2

Hence,
$$x = 3 y = 2$$

31. **(d)** four decimal place


Explanation:
$$\frac{14753}{1250} = \frac{14753}{5^4 \times 2} = \frac{14753 \times 2^3}{5^4 \times 2^4} = \frac{118024}{10000} = 11.8024$$


So, the decimal expansion of the number will terminate after four decimal places.

32. (c) trapezium

Explanation: Diagonals of a quadrilateral divide each other proportionally, then it is

In quadrilateral ABCD, diagonals AC and BD intersect each-other at O and $rac{AO}{OC}=rac{BO}{OD}$ Then, quadrilateral ABCD is a trapezium.

(a) tan²A 33.

Explanation: Given: $\sin^2 A + \sin^2 A \tan^2 A$

$$= \sin^2 A(1 + \tan^2 A)$$

$$= \sin^2 A(\sec^2 A)$$

$$=\sin^2 A \times \frac{1}{\cos^2 A}$$

$$= \frac{\sin^2 A}{\cos^2 A}$$

$$= tan^2 A$$

(c) (4, 0) 34.

Explanation: Centriod is G
$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) = G\left(\frac{-1 + 5 + 8}{3}, \frac{0 - 2 + 2}{3}\right) = (4, 0)$$

35.

Explanation: The event which cannot occur is said to be impossible event and probability of impossible event is zero.

(c) 7.5 sq. units 36.

Explanation:

Graph of the equation 2x + 3y - 12 = 0

$$2x + 3y = 12$$

$$2x = 12 - 3y$$

$$x = \frac{12 - 3y}{2}$$

Putting
$$y = 4$$

We get
$$x = \frac{12 - 3 \times 4}{2} = 0$$

Putting
$$y = 2$$
,

Putting y = 2,
We get
$$x = \frac{12-3\times2}{2} = 3$$

Thus, we have the following table for the points:

X	0	3
у	4	2

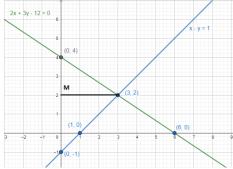
Plotting point A(0, 4), B(3, 2) on the graph paper and drawing a line passing through them we obtain a graph of the equation.

Graph of the equation x - y - 1

We have
$$x - y = 1$$

$$x = 1 + y$$

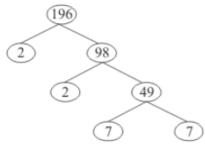
Thus, we have the following table for the points for the line x - y = 1


x	1	0
у	0	-1

Plotting point C(1, 0) and D(0, -1) on the same graph paper drawing a line passing through them, we obtain the graph of the line represented by the equation x - y = 1

Clearly two lines intersect at A(3, 2).

The graph of line 2x + 3y = 12 intersect with y-axis at B(0, 4) and the graph of the line x - y = 1 intersect with y-axis at C(0, -1)


So, the vertices of the triangle formed by the two straight lines and y-axis are A(3, 2) and B(0, 4) and C(0, -1) Now.

Area of
$$\Delta ABC=rac{1}{2}$$
[Base $imes$ Height]
$$=rac{1}{2}(BC\times AB)$$

$$=rac{1}{2}(5\times 3)$$

$$=rac{15}{2}sq.units=7.5sq.units$$

37. **(c)** 4

Explanation:

Using the factor tree for prime factorisation, we have:

Therefore,

$$196 = 2 \times 2 \times 7 \times 7$$

$$196 = 2^2 \times 7^2$$

The exponents of 2 and 7 are 2 and 2 respectively.

Thus the sum of the exponents is 4.

38. **(a)** 30^o

Explanation:
$$\sqrt{3} \tan 2\theta - 3 = 0$$

$$\Rightarrow \sqrt{3} \tan 2\theta = 3$$

$$\Rightarrow an 2 heta = rac{3}{\sqrt{3}}$$

$$\Rightarrow \tan 2\theta = \sqrt{3}$$

$$\Rightarrow \tan 2\theta = \tan 60^\circ$$

$$\Rightarrow 2 heta = 60^\circ$$

$$\Rightarrow heta = 30^{\circ}$$

39. **(a)** $\frac{1}{7}$

Explanation: Non-leap year contains 365 days = 364 days + 1 day = (364/7) weeks + 1 day = 52 weeks + 1 remaining day = 52 Sundays + 1 remaining day

We will have 53 Sundays if 1 remaining day is a Sunday.

Possible outcomes = {(Monday), (Tuesday), (Wednesday), (Thursday), (Friday), (Saturday), (Sunday)} Number of Total outcomes = 7

Number of possible outcomes = 1

$$\therefore$$
 Required Probability = $\frac{Possible outcomes}{Total outcomes} = \frac{1}{7}$

40. (d) 7

Explanation: In parallelogram, AB = CD, squaring both sides

$$\Rightarrow$$
 AB² = CD²

$$\Rightarrow (8-6)^2 + (2-1)^2 = (p-9)^2 + (3-4)^2$$

$$\Rightarrow 4+1 = p^2 + 81 - 18p + 1$$

$$\Rightarrow p^2 - 18p + 77 = 0$$

$$\Rightarrow (p-7)(p-11)=0$$

$$\Rightarrow p=7$$
 and $p=11$

Section C

41. **(d)** 1800 km

Explanation: Speed = 1200 km/hr

Time =
$$1\frac{1}{2}$$
hr = $\frac{3}{2}$ hr

$$\therefore$$
 Required distance = Speed \times Time

=
$$1200 \times \frac{3}{2}$$
 = 1800 km

42. **(d)** 2250 km

Explanation: Speed = 1500 km/hr

Time =
$$\frac{3}{2}$$
 hr

$$\therefore$$
 Required distance = Speed \times Time

=
$$1500 imes rac{3}{2}$$
 = 2250 km

43. **(c)** 90°

Explanation: Clearly, directions are always perpendicular to each other.

44. **(d)** $450\sqrt{41}$ km

Explanation: Distance between aeroplanes after $1\frac{1}{2}$ hour

=
$$\sqrt{(1800)^2 + (2250)^2} = \sqrt{3240000 + 5062500}$$

= $\sqrt{8302500} = 450\sqrt{41}$ km

45. **(d)** 2025000 km²

Explanation: Area of $\triangle POQ = \frac{1}{2} \times base \times height$

=
$$\frac{1}{2} \times 2250 \times 1800$$
 = 2250 \times 900 = 2025000 km²

46. **(c)** 462 m^3

Explanation: Volume of the earth taken out

$$= \pi \left(\frac{7}{2}\right)^2 \times 12 = \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 12 = 462 \text{ m}^3$$

47. **(a)** 450 m^2

Explanation: Area of the rectangular field

$$= 30 \times 15 = 450 \text{ m}^2$$

48. **(c)** 38.5 m^2

Explanation: Area of top of the pit = $\pi \left(\frac{7}{2}\right)^2 = \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$

$$=\frac{77}{2}$$
 = 38.5 m²

49. **(c)** 411.5 m²

Explanation: Area of the remaining field = Area of rectangular field - area of top of pit

$$= 450 - 38.5 = 411.5 \text{ m}^2$$

50. **(c)** 1.12 m

Explanation: The rise in the level of field = $\frac{462}{411.5}$ = 1.12 m

